HR市場の定義
<図1>
(2)提供価値:既存の管理業務の効率化・高度化は最もROI(費用対効果)を説明しやすい一次的な価値ですが、実際にはそこで生み出されたアウトプット(情報やデータ)を集約・分析することで意思決定の精度・スピード・納得性を高めたり、意思決定された施策の実行支援によって生まれる価値が追随したりします。以降ではバリューチェーンになぞらえて、それぞれ川上・川中・川下と呼びます。
(3)提供手段:従来はアウトソース/外部委託やコンサルテーションのように(知的)労働集約的なサービスが主流でしたが、近年はクラウドや機械学習エンジンなど、テクノロジーが実装されたソフトウェアも台頭するようになりました。
(1)(2)の一部もしくは全部を、(3)のテクノロジーで解決しているプロダクト・サービスを総称して「HRテック」と呼べるでしょう。
HRテック市場のバリューチェーン
<図2>
●現存のHRテックのほとんどは、人事領域の一部の業務を効率化(川上を部分最適化)しており、2023年には人事BPO(=労働集約的に人事業務を効率化する)市場を上回る見込み
●川上の垂直統合や、川上の一部から緩やかに川中に染み出す動きが見られる
●川中や川下はまだ労働集約的で、HRテックの存在は限定的
バリューチェーンの文字通り、「●●テック」のような新産業分野の付加価値は川上から順に形成されるものですが、国内HRテック市場も2020年時点では川上領域のプロダクト・サービスが大半を占めています。これらは採用や労務などの業務フローをアナログからデジタルに置き換えたり、既にデジタル化されている業務について機械学習エンジンを用いて自動化したりすることで、管理業務を効率化・高度化しています。
また、個別の人事領域においても、従業員規模・会社のステージ・業職種ごとに業務フローや顧客インサイトが異なることから、バーティカル SaaS(特定の業職種に特化したソフトウェア)が群雄割拠しています。アメリカのエンタープライズ企業は、1社平均で7つの異なるHRテックツールを使い分けているというデータもありますが、日本でも人事領域ごとに部分最適化された業務効率化ツールを併用するトレンドはまだ続くと予測します。なお、2023年には人事BPO市場規模が906億円、HRテッククラウド市場は1,000億円になると予測されており、市場の中心はあと数年でヒトからソフトウェア・機械に文字通り移行するでしょう(※2)。
一方で、川上の領域を垂直統合するグローバルプレイヤーも台頭し始めています(HCMやHRMなどと呼ばれます)。バーティカル SaaSのように部分最適化されたツールは「痒い所に手が届く」という利点がある一方、商慣習の異なる多国籍拠点を一元管理する上ではマネジメント効率が悪いため、グローバル展開を志すエンタープライズ企業の一部から支持され始めているように見受けられます。
川中・川下の領域は、まだ労働集約的なサービスが中心で、ここに特化したHRテックは多くありません。川上のプレイヤーが川中まで手を伸ばし、アナリティクス機能を提供し始める動きも見られますが、業務効率化と意思決定の効率化では本質的なケイパビリティ(組織的な強み)が異なるため、一朝一夕には両方の価値を具備することは困難です(※3)。そのため現状では、人事担当者が大変なエクセル作業を毎月・毎週繰り返すか、あるいは何もしないで済ますか、データサイエンティストやアナリストが汎用的なBIツール(データの集約・可視化をサポートするツール)やデータウェアハウスを活用・構築することで賄うかの、いずれかの選択肢に落ち着いているようです(※4)。
本連載のテーマでもある「ピープルアナリティクス」はエンゲージメントサーベイの延長と誤解されることもありますが、実際はこの川中の意思決定領域を最適化・高度化することが本質的な提供価値であると考えています。
次章では人事の隣接領域で起こっているトレンドも踏まえながら、HRテックの半歩先を予測していきます。
※1 HR Techナビ:9カテゴリー449サービス掲載!HR Tech業界カオスマップ(2019年10月15日現在)
https://hrtechnavi.jp/lab/hrtech-chaosmap/
※2 IT人材ラボ:「HRTechクラウド市場の実態と展望2018年度版」を刊行、2023年度のHRTechクラウド市場規模は1000億円以上に―ミック経済研究所
https://itjinzai-lab.jp/article/detail/1463
矢野経済研究所:2018年度のIT系BPO市場規模は前年度比3.9%増の2兆4,762億円、非IT系BPO市場規模は同1.9%増の1兆7,348億7,000万円、2019年度以降もIT系・非IT系ともに市場拡大を予測
https://www.yano.co.jp/press-release/show/press_id/2296
※3 川中で必要とされるケイパビリティは、本連載の第2回目も参照ください
《前編》ピープル・アナリティクス = 人財のための財務諸表【2】
https://www.hrpro.co.jp/series_detail.php?t_no=1955
※4 3つ目のアプローチは想像以上にリソースがかかります。詳細は本連載の第8回目も参照ください
誤解によって迷走するピープルアナリティクス【8】(2ページ目)
https://www.hrpro.co.jp/series_detail.php?t_no=2103